3.5 Design Challenge III The Quadrilateral Game Special properties of triangles and quadrilaterals make them useful in the design of buildings and mechanical objects. They also play an important role in the design of craft objects. The two common forms of **symmetry** are defined below. #### Reflectional Symmetry A shape with reflectional symmetry has halves that are mirror images of each other. If you fold along the line of symmetry, the two halves of the figure match exactly. If you hold a mirror along the line of symmetry, the figure's reflection will match the half behind the mirror. #### **Rotational Symmetry** A shape with rotational symmetry can be turned about a center point through some angle between 0° and 360° and it will look the same. If you close your eyes as the figure above is rotated 120° or 240° and then open them, you won't notice any difference. Problem 3.5 - A Spotting symmetries in polygons is the first step in using those figures to make art and craft designs. - 1. What kind of symmetries do the triangles in the Shapes Set have? 2. What kind of symmetries do the quadrilaterals in the Shapes Set have? **3.** Look for objects in your classroom or in nature that have symmetries. What kind of symmetries do they have? continued on the next page > 73 Problem 3.5 continued The Quadrilateral Game challenges you to use all that you know about polygons, including symmetry. The game is played by two teams. To play, you need two number cubes, a game grid, a geoboard, and a rubber band. #### The Quadrilateral Game #### Directions - Near the center of the geoboard, put the rubber band around a square measuring one unit on each side. - Team A rolls the number cubes one at a time to locate an entry in the game grid on the next page. The first number locates the row and the second number locates the column. - Team A reads the description in that location. Then they look at the quadrilateral already on the game board, and form a new quadrilateral to match the description. The challenge for Team A is to move as few corners as possible to make the new quadrilateral. - For each corner moved, Team A receives one point. - Next, Team B rolls the number cubes and locates the corresponding description on the grid. They make a quadrilateral matching the new description by moving as few of the corners as possible. Team B receives one point for each corner moved. - Play continues until each team has had five turns. The team with the lowest score at the end is the winner. ## Problem 3.5 ### continued - B Play the Quadrilateral Game. Keep a record of interesting strategies and difficult situations. - 1. When did you receive 0 points during a turn? Why didn't you need to move any corners on those turns? - 2. Write two new descriptions of quadrilaterals that you could use in the game grid. - 3. Make your own game board with descriptions for a Triangle Game. ## **Quadrilateral Game Grid** | | symmetry | Column | than 180° | Column | Column | lengths equal | |----------|---|--|---|---|--|---| | Row
1 | A quadrilateral
with one
diagonal that
is a line of | A quadrilateral
with no side
lengths equal | A quadrilateral
with exactly one
angle greater | A parallelogram
that is not a
rectangle | Add 3 points
to your score
and skip your | A quadrilateral
with two pairs
of opposite side | | Row
2 | A quadrilateral
with both pairs
of adjacent side
lengths equal | A quadrilateral
with two pairs
of equal
opposite angles | A quadrilateral
with a diagonal
that divides it
into two
identical shapes | A quadrilateral
that is a
rhombus | A quadrilateral
with 180°
rotational
symmetry | Subtract 1
point from
your score and
skip your turn | | Row
3 | A quadrilateral
with no angles
equal | A quadrilateral
with one pair of
equal opposite
angles | A quadrilateral
with exactly one
pair of opposite
angles that are
equal | Add 2 points
to your score
and skip your
turn | A quadrilateral
with no sides
parallel | A quadrilateral
with exactly two
right angles | | Row
4 | A quadrilateral
with no
reflectional or
rotational
symmetry | A quadrilateral
with four right
angles | Skip a turn | A quadrilateral
with exactly
one pair of
consecutive
side lengths
that are equal | A quadrilateral
with exactly one
right angle | A quadrilateral
with two 45°
angles | | Row
5 | Subtract 2
points from
your score and
skip your turn | A quadrilateral
that is not a
rectangle | A quadrilateral
with two pairs
of consecutive
angles that are
equal | A quadrilateral
with all four
angles the
same size | A quadrilateral
with four lines
of symmetry | A quadrilateral
that is a
rectangle | | Row
6 | A quadrilateral
that is a square | Add 1 point to
your score and
skip your turn | A rectangle that is not a square | A quadrilateral
with two
obtuse angles | A quadrilateral
with exactly one
pair of parallel
sides | A quadrilateral
with one pair of
opposite side
lengths equal | ACE Homework starts on page 76. Investigation 3 Designing Triangles and Quadrilaterals