3 4 Solving Linear Equations

To maintain the equality of two expressions, you can add, subtract, multiply, or divide each side of the equality by the same number. These are called the **properties of equality**. In the last Problem, you applied properties of equality and numbers to find a solution to an equation.

So far in this Investigation, all of the situations have involved positive whole numbers.

- Does it make sense to think about negative numbers in a coin situation?
- Does it make sense to think about fractions in a coin situation?

What strategies do you have for solving an equation like -2x + 10 = 15?

You have used the properties of equality to solve equations involving pouches and coins. These properties are also useful in solving all linear equations.

Problem 3.4

A For parts 1–3:

- · Record each step you take to find your solution.
- Then, check your answer.
- **1. a.** 5x + 10 = 20 **b.** 5x 10 = 20
- **c.** 5x + 10 = -20

- **d.** 5x 10 = -20 **e.** 10 5x = 20 **f.** 10 5x = -20 **2. a.** $\frac{1}{4}x + 6 = 12$ **b.** $1\frac{1}{2} + 2x = 6\frac{1}{2}$ **c.** $\frac{3}{5} = -x + 1$

- **d.** 3.5x = 130 + 10x **e.** 15 4x = 10x + 45

- **a.** 3(x+1) = 21 **b.** 2+3(x+1) = 6x **c.** -2(2x-3) = -2

64

Moving Straight Ahead

Problem 3.4 | continued

B Below are examples of students' solutions the equations from Question A, part (3) above. Is each solution correct? If not, explain what the error is.

$$3(x+1)=21$$

Corry's Solution

3 times something in the parentheses must be 21.

$$903()=21.$$

The something is 7.

$$Sox + 1 = 7$$
, and

x = 6.

$$2 + 3(x + 1) = 6x$$

Hadden's Solution

2 + 3(x + 1) is equivalent to 5(x + 1).

So I can rewrite the original equation as 5(x + 1) = 6x.

Using the Distributive Property, this is the same as 5x + 5 = 6x.

Subtracting 5x from each side, I get 5 = 1x.

So x = 5.

$$-2(2x-3)=-2$$

Jackie's Solution

By using the Distributive Property on the left-hand side of the equality, I get -4x - 6 = -2.

By adding 6 to each side, I get -4x = 4.

By dividing both sides by -4, I get x = -1.

Output Describe the strategies you have used for solving linear equations. When might you use one over another?

ACE Homework starts on page 69.

Investigation 3 Solving Equations

65